HIGH~-TEMPERATURE EVAPORATION OF A METAL

P. I. Ulyakov UDC 536.423.16:546.3

The evaporation of metals is analyzed with the electron component of their thermal conduc-
tivity taken into account. A "thermodynamic saturation" of the evaporation process at high
temperatures is revealed.

When a metal surface is heated at a high rate, then the temperature of the evaporating surface T is
above the boiling point Ty, and rises further as the thermal flux is increased. At higher temperatures the
thermal energy tends to "convert" to kinetic energy of the vapor, however, because the specific heat of the
solid metal is higher than that of its vapor. This effect limits then the temperature rise as well as the
vapor saturation pressure p and evaporation rate v depending on it.

This trend becomes evident already in the derivation of a formula for p with the specific heat of the
metal lattice ¢ and of the metal vapor cp assumed constant. Expressing the free energies of the solid and
of an ideal monoatomic gas (metal vapor) as subject to the law of equal distribution, and then equating their
equilibrium pressures, temperatures, and chemical potentials (as in [1], for example), we obtain
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As the temperature rises, the power function T(cp'c)/R in (1) limits the rise in pressure p along
the activation exponent, i.e., the pressure p(T) reaches a maximum. At the boiling point of metals (Al,
Cu, Pb) the electron specific heat ¢y is 8-10% of the lattice specific heat c; and is usually disregarded.
High-temperature evaporation results in an appreciable excitation of electrons and in an increase of their
specific heat with temperature: cg = BT. At a temperature about 10! °K, on the other hand, cg is approxi-
mately equal to 50% of ¢; for aluminum and approximately equal to cj for lead [2].

Without considering the structure of the transition layer at the evaporation surface [3, 4] and assum-
ing the temperature as well as the pressure to be constant on both sides of the boundary, we write for the
total specific heat of a metal:

o
€= Cpy+(p; —Co) + ¢, = 3R + i"_IX(iT + BT = 3R - B'T. 2)

The difference between the constant-volume specific heat cyj and the constant-pressure specific heat cpj is
expressed here in terms of volume expansivity @ and compressibility K. The decrease in the heat of eva-
poration with rising temperature can be determined according to the Kirchhoff formula:

T
LTy~ L(T) + Tg le,— ¢ (T)14dT. 3)
b
Inserting (2) into (3) and then integrating, we obtain for a monoatomic vapor (cp = (5/2)R)
’ 1 ,
L'=L— —2—(T——Tb)[R +§(T - T (4)

The pressure of saturated metal vapor together with the temperature-dependent specific heat will be
found from the Clapeyron--Clausius equation
’ dp _ L'(D
ar TV —Vy)' (5)
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with V denoting the specific volume of a gas.

The equation of continuity at the evaporation boundary relates the specific volumes of both phases to
the evaporation rate v and the vapor velocity u; in the one~dimensional case, for instance,

Vo =V,u. (6)

Experiments with laser techniques of metal vaporizing have shown that v< u, at energy fluxes up to 10°
W/cm? at least, i.e., that Vg < V and the specific volume of the metal may, to the first approximation,
be disregarded.

Inserting (4) into (5) with V= RT/p and integrating will then yield

{ 1 { RT 2 —~1/2
p:Bexp‘K—%‘A)EXP[———ﬂ—(J;;_ET_bﬁ—ﬁT>]T

= Bexp (——L) 70
RT
With the superheat temperature factor ¥ = T/T}, A = L/RTy, and 0 = 8'Tp/2R, the temperature-
dependence of the exponent 1 (¥) can be expressed as
0.5 4-0 (1 ++%)
¥y =—05— —— " "7 ¢
™ v(inv +InT7) ®

and plotted graphically as shown in Fig. 1 for a few metals. It is to be noted that ¥. D, Bennet in [5] has
used semiempirical constant n-values for high-temperature evaporation: —1.2 for iron and copper or —1.0
for aluminum and lead. It is not difficult to conclude from (8) that such values formally correspond to high
temperatures, 66, 000°K for copper, where the laws of evaporation cannot be based on classical statistics.

Constant B in (7) is determined from the conditions of the boiling point: py = 0.1 MN/m? and T = Th.
Then

, Y
pipy="v ~!/%xp HA + —2—)( I— %—) — % v— 1)1 : 9)

We will now determine the linear evaporation rate v for a metal. In the one-dimensional case of
high~temperature evaporation under the Zhuge condition that u=ax= vyRT, formula (7) yields
v =pVgVy/RT. Insertion into (9) yields

U:f’viexp[(AJr %_)(1h%)_%(v~1)2}, (10)

where vy, = pgVgY Y?ﬁTb (Table 1).

Graphs of functions p(¥) (9) and v(¥) (10) for Cu and Al are shown in Fig, 2. When the superheat of
the metal is low (¥ = 1), then the heat of evaporation A is predominant. As the superheat increases, the
electron specific heat also increases while p(¥) and v(v) increase slower until they reach a maximum at
certain values v ... As the temperature rises further, formally the evaporation rate should decrease.
The values of p and v calculated according to these formulas will evidently be incorrect at ¥ > vpyax, how-

ever, because the assumption of a small Vg relative to V is not valid and, besides, the process will already
not be at equilibrium.

181



p.,g'ﬂ v ‘ / FN\

201400 /

15 |300 / g ‘\
/

1o\ 2o0
7/ am
5|00 — ;

12 4 6 5 3 s 7 6 logq
Fig. 2 Fig. 3

Pl
I

25

10
absorbed

Fig. 2. Saturation vapor pressure p (N /mz) and linear evaporation
rate v (m/sec) as functions of the dimensionless temperature factor
v = T/Ty, for aluminum and copper.

Fig. 3. Evaporation parameters: pressure p (N/m?, rate v (m/sec),
and temperature v = T /Ty, as functions of the density of power q (W
/em?) absorbed by a metal (iron, aluminum, copper, and lead).

High-temperature evaporation can be realized experimentally by laser irradiation of a substance,
for example. The equation of energy conservation during a steady-state process, in the case of a luminous
flux q absorbed by a thin surface layer of metal, is then

T
Veq szc (T)dT + L' (T)] — oRT, {A 2
Ty ’ ’ 2 (11)

+-;— +o(l—A)— 3A] ,

with A = Ty/Ty,.

On the basis of Eqs. (10), (11) one can plot a curve v(q) of the superheat as a function of the absorbed
flux and, from that, also p(q) and v(q) as shown in Fig. 3 for four different metals. A direct experimental
verification of these relations requires that the parameters of one-dimensional steady-state high-temperature
evaporation be measured. An indirect evaluation of the results can be based on test values for the specific
momentum of the escaping vapors. A calculation of the specific (per unit of thermal flux) pressure of metal
vapor p/q on the basis of functions p(v) and q(v) shows that this ratio p/q is only a very weak function of the
thermal flux q. As q is increased from 10° to 10° W/cm?, p/q for aluminum increases by 19% at a constant
reflection factor of the surface. Tests performed with several metals within this range of thermal flux
have revealed areas of a constant p/q ratio under steady-state conditions [6]. Since in those tests the
reflection factor could only decrease with increasing q and the increment of p/q lay within the limits of
test accuracy (25%), hence the agreement between calculated and measured values is entirely satisfactory.

Thus, during high-temperature evaporation of 2 metal without surface shielding, a certain extreme
mode will be reached which depends on the properties of the evaporating substance only. The maximum
evaporation rate is attained at a somewhat lower temperature then the maximum pressure, because the
former is more strongly temperature dependent. The extreme values Ymp and Vy,y are found from the
usual conditions: dp/dv = 0 and dv/dv = 0. For example

1
vm.,——2;(1/ 1+20(1+2A)+4®—1).

The calculated values of (¥y,); and the corresponding values of (Tp)i, ®Pm)i> (Vmli are given in Table
1 for five different metals. '
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TABLE 1. Parameters of the Extreme Evaporation Mode (Maxi-
mum values)

Vmy m/ | vp cm/ Prpe 10-
Metal T .10°%, © . T 1073, ©

Vmo mo K Lec i dec mp mp K N/ m?
Cu 6,4 18,3 100 2,3 7,5 21,5 10,3
Al 5,8 15 500 5,2 6,5 6,9 24,2
Ph 4,1 8,2 20 4 4,6 9,1 1
Sn 5,0 12,8 155 4,2 — _ —
Fe 3,1 10, 6 2,3 —_— — —

Inasmuch as high-temperature evaporation may be regarded as thermodynamically at equilibrium up
to vy, the extreme mode is equivalent to the critical state of the substance. The extreme values Ty, and
Pm (Table 1) may be regarded as critical only very approximately, however, inasmuch as two assumptions
have been made here: equilibrium and a low density of the vapor. Let us examine the significance of the
second assumption. We solve the Clapeyron—Clausius equation with the specific volume Vg of the solid
phase taken into account. We also note that the effect of vapor pressure on the phase-transformation
kinetics within the solid has not been considered earlier. Taking this effect into account now (as in [7], for
example) vields an additional term pV in the expression for L'. Integrating Eq. (5) with these cor-
rective terms in the case of aluminum has yielded a more accurate value for p near its maximum, namely
29 - 108 N/m?or 40% higher than the earlier approximate value. At that temperature and pressure, then,
the calculated vapor density (0.74 Mg/mg) is equal to 35% the density of solid aluminum, with thermal
expansivity taken into account.

The approximately 1:3 ratio phase to vaporous phase specific volume confirms the proximity of a
subsgtance to its critical state.

NOTATION

T is the evaporation temperature;
T is the boiling point;

p is the saturation vapor pressure;
¢ is the specific heat of metal;

Cp is the specific heat of vapor;

Cpi is the specific heat of lattice at constant pressure;
evi is the specific heat of lattice at constant volume;
Ce is the specific heat of electrons;

v is the evaporation rate;

Vh is the evaporation rate at boiling point;

R is the universal gas constant;

L is the standard heat of evaporation;

L' is the actual heat of evaporation

B is the temperature coefficient of electron thermal conductivity;
Vv is the specific volume of vapor;

Vg is the specific volume of solid metal;

o is the thermal expansivity;

K is the compressibility;

u is the vapor velocity;

v is the dimensionless superheat temperature;

A, o, ® A are the dimensionless constants;

@y is the local velocity of sound;

Y= cp/cy;

q is the density of absorbed power.
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